Обзор часов реального времени DS3231 (RTC)

Модуль DS3231 (RTC, ZS-042) — представляет собой недорогую плату с чрезвычайно точными часами реального времени (RTC), с температурной компенсацией кварцевого генератора и кристалла. Модуль включает в себя литиевую батарею, которая поддерживает бесперебойную работу, даже при отключении источник питания. Интегрированный генератор улучшить точность устройства и позволил уменьшить количество компонентов.

Технические параметры

  • Напряжение питания: 3.3В и 5В
  • Чип памяти: AT24C32 (32 Кб)
  • Точность: ± 0.432 сек в день
  • Частота кварца:32.768 кГц
  • Поддерживаемый протокол: I2C
  • Габариты: 38мм x 22мм x 15мм

Общие сведения

Большинство микросхем, таких как DS1307 используют внешний кварцевый генератор частотой 32кГц, но в них есть существенный недостаток, при изменении температуры меняется частота кварца, что приводит к погрешности в подсчете времени. Эта проблема устранена в чипе DS3231, внутрь которого установили кварцевый генератор и датчик температуры, который компенсирует изменения температуры, так что время остается точным (при необходимости, данные температуры можно считать). Так же чип DS3231 поддерживает секунды, минуты, часы, день недели, дата, месяц и год информацию, а так же следит за количеством дней в месяце и делает поправку на високосный год. Поддерживает работу часов в двух форматов 24 и 12, а так-же возможно запрограммировать два будильника. Модуль работает по двух проводной шине I2C.

Теперь немного о самом модуле, построен он на микросхеме DS3231N. Резисторная сборка RP1 (4.7 кОм), необходима для подтяжки линий 32K, SQW, SCL и SDA (кстати, если используется несколько модулей с шиной I2C, необходимо выпаять подтягивающие резисторы на других модулях). Вторая сборка резисторов, необходима для подтяжки линий A0, A1 и A2, необходимы они для смены адресации микросхемы памяти AT24C32N. Резистор R5 и диод D1, служат для подзарядки батарее, в принципе их можно выпаять, так как обычной батарейки SR2032 хватает на годы. Так же установлена микросхема памяти AT24C32N, это как бы бонус, для работы часов RTC DS3231N в ней нет необходимости. Резистор R1 и светодиод Power, сигнализируют о включении модуля. Как и говорилось, модуль работает по шине I2C, для удобства эти шины были выведены на два разъема J1 и J2, назначение остальных контактов, можно посмотреть ниже.

Назначение J1:

  • 32K:   выход, частота 32 кГц
  • SQW: выход
  • SCL:   линия тактирования (Serial CLock)
  • SDA:  линия данных (Serial Data)
  • VCC:   «+» питание модуля
  • GND: «-» питание модуля  

Назначение J2

  • SCL:  линия тактирования (Serial CLock)
  • SDA:  линия данных (Serial Data)
  • VCC:  «+» питание модуля
  • GND: «-» питание модуля

Немного о микросхеме AT24C32N. Это микросхема с 32к памятью (EEPROM) от производителя Atmel, собранная в корпусе SOIC8, работающая по двухпроводной шине I2C. Адрес микросхемы 0x57, при необходимости легко меняется, с помощью перемычек A0, A1 и A2 (это позволяет увеличить количество подключенных микросхем AT24C32/64). Так как чип AT24C32N имеет, три адресных входа (A0, A1 и A2), которые могут находится в двух состояния, либо лог «1» или лог «0», микросхеме доступны восемь адресов. от 0x50 до 0x57

Подключение DS3231 к Arduino

Необходимые детали:

  • Arduino NANO x 1 шт.
  • Часы реального времени на DS3231, RTC, SPI, AT24C32 x 1 шт.

Подключение:

В данном примере буду использовать только модуль DS3231 и Arduino NANO, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину I2C, SCL в A5 (Arduino NANO) и SDA в A4 (Arduino NANO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.

Библиотеки работающий с DS3231 нет в среде разработке IDE Arduino, необходимо скачать «DS3231 » и добавить в среду разработки Arduino.

Установка времени DS3231

В сети есть библиотека microDS3231 от Gyver. Свежую версию всегда можно установить/обновить из встроенного менеджера библиотек Arduino по названию microDS3231. Краткая документация находится по ссылке, базовые примеры есть в самой библиотеке.

Чтобы автоматически установить текущее время на модуле, можно прошить следующую программу:


#include <microDS3231.h>
MicroDS3231 rtc;
void setup() {
  rtc.setTime(COMPILE_TIME);
}
void loop() {
}

Она установит дату и время, равное времени компиляции программы, то есть текущее. После этого можно работать с модулем, например выведем дату и время разными способами:


#include <microDS3231.h>
MicroDS3231 rtc;
void setup() {
  Serial.begin(9600);
}
void loop() {
  // получаем и выводим каждый элемент отдельно
  Serial.print(rtc.getHours());
  Serial.print(":");
  Serial.print(rtc.getMinutes());
  Serial.print(":");
  Serial.print(rtc.getSeconds());
  Serial.print(" ");
  Serial.print(rtc.getDay());
  Serial.print(" ");
  Serial.print(rtc.getDate());
  Serial.print("/");
  Serial.print(rtc.getMonth());
  Serial.print("/");
  Serial.println(rtc.getYear());
  
  // выводим температуру модуля
  Serial.println(rtc.getTemperatureFloat());  
  
  // выводим дату и время готовыми строками
  Serial.println(rtc.getTimeString());
  Serial.println(rtc.getDateString());
}

Способы удаления меди

Сталкиваясь с разработкой печатной платы впервые или стараясь минимизировать затраты при ежедневной работе с электроникой, разработчики стараются найти более доступные альтернативы в каждом этапе изготовления. Ниже собрана информация про самые популярные методы удаления меди (травления) с незащищенных маской участков печатных плат, их преимущества и недостатки.

Ряд некоторых способов удаления меди:

    Водный раствор хлорного железа FeCl3∙6H2O

    Считается одним из самых популярных растворов для травления.

    Способ приготовления. В теплой воде H2O (300 мл) разводится 100гр хлорного железа FeCl3∙6H2O. Должна получиться насыщенная золотисто-желтая жидкость. Чем насыщенней эмульсия, тем быстрее будет проходить процесс, но обычно занимает от 15 до 60 минут. Также на скорость влияет перемешивание (можно использовать компрессор, который постоянно перемешивает жидкость) и температура (можно периодически подогревать, но не выше 40 градусов). После окончания процедуры, необходимо тщательно промыть плату под водой. Остаток рабочего раствора можно сохранить в герметичной таре и применить повторно. С каждым последующим применением раствор будет менее активным и скорость реакции будет уменьшаться.

    Из недостатков способа можно отметить лишь некоторую опасность для окружающих предметов при неаккуратном использовании. Следует быть внимательным при работе с данным методом, так как при попадании на любые предметы появляются трудновыводимые пятна.

    Отличия представленных на рынке форм хлорного железа.

    В настоящее время доступны безводное хлорное железо (FeCl3) и, так называемое, шестиводное хлорное железо (FeCl3∙6H2O), оно же Железо (III) хлорид 6-водный (гексагидрат). Визуально оно отличается цветом:

    Шестиводное хлорное железо напоминает мокрый песок желто-оранжевого цвета.
    Безводное хлорное железо — порошок чёрного цвета.

      Растворять 6-водное хлорное железо (FeCl3∙6H2O) не сложно, травит оно предсказуемо и равномерно. Безводное хлорное железо (FeCl3) при растворении незначительно нагревается.

      За счет повышения температуры скорость травления свежеприготовленным раствором возрастает. Однако, неконтролируемый нагрев осложняет тех.процесс тем, что точно установить момент окончания травления может быть затруднительно. Несмотря на то, что часто встречается рекомендация как раз увеличить температуру раствора не стоит забывать и о том, что для более качественного и контролируемого травления повышать температуру раствора значительно выше комнатной температуры не всегда правильно.

      Использованный (насыщенный медью) раствор может быть использован для омеднения поверхностей без электролиза.

      Азотная кислота HNO3

      Редко применяется из-за высокой испаряемости, резкого запаха, сильной гигроскопичности. Для использования потребуется развести кислоту с водой в соотношении 1/3.

      Главное не забывать о последовательности смешивания. Кислота наливается в воду, а не наоборот. Прежде чем опускать заготовку в раствор, проверьте на момент полного высыхания защитного слоя. В противном случае раствор разъест и его. Весь процесс занимает не более 5 минут, однако ввиду указанных неудобств в использовании применяется крайне редко. Очень важно соблюдать меры предосторожности при работе с азотной кислотой.

      Медный купорос (CuSO4) и поваренная соль (NaCl)

      Применяют достаточно редко, из-за выделения ядовитого газа и медленного протекания процесса (до 8 часов).

      В 500мл воды, нагретой до 50 градусов, растворяют 100гр соли, затем добавляют 50гр медного купороса. Чтобы реакция травления протекала быстрее, необходимо поддерживать температуру до 80 градусов.

      Серная кислота (H2SO4) и перекись водорода (H2O2)

      Травление происходит в течение часа. Возможно повторное использование раствора, если хранить его в темном месте и в не герметичной таре. Обладает возможностью к регенерации, путем добавления перекиси.

      В 300мл серной кислоты в воде добавляют 4 таблетки гидроперита. Температура должна сохраняться комнатная, а раствор необходимо периодически перемешивать. При подготовке раствора важно тщательно следите за соотношением составляющих. Для того, чтобы не получить замедленную реакцию, важно следить, чтобы не появлялись пузырьки, означающие переизбыток перекиси водорода.

      Персульфат аммония ((NH4)2S2O8)

      Для приготовления потребуется растворить 35гр кристаллического вещества в 65гр воды. На весь процесс уходит порядка 10 минут. Для оптимального действия требуется поддерживать температуру около 40 градусов, периодически помешивать.

      Лимонная кислота в перекиси водорода (C6H8O7+H2O2)

      Еще один из популярных методов благодаря своей невысокой стоимости, быстрой работе и бережному отношению к фоторезисту.

      Способ приготовления. Для качественного протекания процесса, нужно налить в небольшую ванночку 100мл перекиси водорода 3%, засыпать 30гр лимонной кислоты и опустить в нее плату. Травление происходит равномерно, при нагреве до +40 градусов процесс несколько ускоряется. Также для ускорения добавляют 3гр соли, которая усиливает реакцию. Реакция происходит равномерно. Жидкость быстро меняет свой цвет из прозрачного в синий. Чтобы понять время окончания, надо периодически споласкивать плату или слегка шевелить емкость.

      Из недостатков можно отметить постоянное выделение газов, которое может раздражать дыхательные пути и глаза. Чрезмерный нагрев раствора негативно сказывается на качестве травления, ввиду сложности контроля за окончанием процесса.

      Эмульсия не хранится. Регенерация возможна, но чаще всего в ней нет необходимости, так как гораздо проще рассчитать приготовить новую порцию, учитывая ее невысокую стоимость. Не оставляет несмываемых следов. Использованный раствор не может быть использован для омеднения поверхностей (в отличии от хлорного железа насыщенного медью).

      Объем травления раствором C6H8O7+H2O2 составляет около 0.35см3 меди на 100мл раствора. Для сравнения, 40% и 20% хлорное железо способно растворить 1.15см3 и 0.55см3 меди, соответственно. По объему растворения эффективность раствора C6H8O7+H2O2 в 1.6 раза меньше.


      Независимо от выбранного метода, важно придерживаться правил безопасности, особенно работая с активными кислотами. Лучший вариант работать на открытом воздухе.

      Травить печатные платы в металлической посуде не допускается. Для этого подойдут емкости из стекла или пластика.

      Плата расширения USB 3.2 Gen1

      Плата выносного подключения двух разъемов USB версии 3.2 Gen 1, одного HD-аудио выхода и одного порта микрофона.

      Назначение

      Разработана для замены штатной платы передней панели с двумя USB 2.0 в корпусах персонального компьютера DEXP DC-Slim. Подключается напрямую к 20-контактному разъему USB на материнской плате и добавляет в конфигурацию системы дополнительные 2 разъема USB с версией интерфейса 3.2 Gen 1.

      Основные технические характеристики

      Разъем подключения USB к материнской плате ПКIDC-20
      Разъем подключения MIC/AUX к материнской плате ПКIDC-10
      Размеры (ДхШхВ)60 мм х 15 мм х 12мм